Chapter 9: Multiplication and Division of Decimals

Lesson 1 - Estimating Products
Learning Goals: Estimate products of decimal numbers using whole numbers.

Question:

Saffron is a very expensive spice. It costs about $\$ 2.29$ for just 1 g . As a gift, Rupi gave her mother 8 g of saffron.
a) How do you know that the cost of the saffron was more than $\$ 16$ but less than $\$ 24$?
b) How do you know that the cost was close to $\$ 18$?

Answer:

a) For example, 2.29 is between 2 and 3 , so 8×2.29 is between 8×2, which is 16 , and 8×3, which is 24 .
b) For example, 2.29 is closer to 2 than to 3 , so the amount should be closer to $\$ 16$ than $\$ 24$, but a bit more than $\$ 16$, so $\$ 18$ is a good estimate.

At-Home Help

You can use front-end estimation to estimate the product of decimals or of a decimal number and a whole number.

For example, estimate 4×3.2.
3.2 is about 3 , and $4 \times 3=12$. The product is about 12 .

Lesson 2 - Multiplying Money Amounts by One-Digit Numbers
Learning Goals: Multiply decimal hundredths by one-digit numbers using different strategies.

Question:
A can of juice costs $\$ 1.36$.
a) How do you know that the cost of four cans of juice is between $\$ 4$ and $\$ 8$?
b) How much do four cans of juice cost? Show your work.
Answer:
a) For example, 1.36 is greater than 1 , so 4×1.36 is greater than 4×1, which is 4 .
1.36 is less than 2 , so 4×1.36 is less than 4×2, which is 8 .
b) $\$ 5.44$

For example, 1.36 is 136 hundredths so I can multiply 4×136 and then change the answer back to hundredths.

$$
\begin{aligned}
4 \times 136 & =4 \times 100+4 \times 30+4 \times 6 \\
& =400+120+24 \\
& =544
\end{aligned}
$$

544 hundredths $=5.44$

At-Home Help

Here are three ways to multiply a decimal number by a one-digit number.

For example, multiply $\$ 4.35 \times 3$.

- Think of $\$ 4.35$ as 435 pennies. Use base ten blocks to model three groups of 435. Regroup 10 ones as 1 ten, and 10 tens as 1 hundred.
- Add $\$ 4.35+\$ 4.35+\$ 4.35$.
- Use play coins to model $\$ 4.35 \times 3$. Multiply the loonies first ($4 \times 3=12$). Multiply the dimes next ($3 \times 3=9$ dimes, or 0.90). Multiply the pennies last ($3 \times 5=15$ pennies, or 0.15). Add each part together: $12+0.90+0.15$.

Lesson 3 - Multiplying Decimals by One-Digit Numbers
Learning Goals: Multiply decimal tenths, hundredths, and thousandths by one-digit numbers.

Question:

Mark is packaging ground turkey. Each package holds 0.678 kg .
a) Estimate the total mass of five packages of ground turkey.
b) Explain why your estimate makes sense.

Use a number line.
c) Calculate the total mass of five packages.

Show your work.
Answer:
a) For example, 0.678 is close to 0.7 and $5 \times 0.7=3.5$; the total mass is about 3.5 kg .
b) For example:

My picture shows 5 jumps of 0.7 . That gets me to 3.5 on the number line. First I was at 0.7 , then 1.4 , then 2.1 , then 2.8 , and then 3.5 .
c) 3.390 kg ; for example, I modelled 5 groups of 0.678 with base ten blocks. I traded 40 thousandths for 4 more hundredths. I traded 30 hundredths for 3 more tenths. I traded 30 tenths for 3 more ones.

Note that some students may choose to show their work symbolically; that is equally acceptable.

Lesson 4 - Estimating Quotients
Learning Goals: Estimate quotients when dividing decimal numbers by one-digit divisors.

Question:

Each length of ribbon is cut into the given number of pieces. Estimate the length of each piece.
Explain your thinking.
a) 8.28 m cut into five equal pieces
b) 1.345 m cut into four equal pieces
c) 1.52 m cut into eight equal pieces.

Answer:
For example:
a) For example, about $2 \mathrm{~m} ; 8.28$ is close to 10 and $10 \div 5=2$
b) For example, about $0.3 \mathrm{~m} ; 1.345$ is close to 1.2 , or 12 tenths; 12 tenths $\div 4=3$ tenths.
c) For example, about $0.2 \mathrm{~m} ; 1.52$ is close to 1.6 , or 16 tenths; 16 tenths $\div 8=2$ tenths.

At-Home Help

When you divide a decimal number and estimate the quotient, it helps to compare the decimal with whole numbers that are easy to divide.
For example, estimate $5.6 \div 2$. Compare 5.6 with two whole numbers that are easy to divide by 2 . For example, $6 \div 2=3$, and $4 \div 2=2$. 5.6 is closer to 6 , so choose $6 \div 2=3$ as your estimate.

Lesson 6 - Dividing Decimals by One-Digit Numbers

Learning Goals: Divide a decimal by a one-digit number using models and symbols.

Question:

Describe two strategies you could use to divide 9.65 by 5.

Answer:

For example, I could write 9.65 as $5+4.5+0.15$.
I would divide each part by 5 to get
$1+0.9+0.03=1.93$.
Another strategy I could use is to think of 9.65 as 965 hundredths.
I would divide 965 by 5 .

$$
\begin{aligned}
965 & =1000-35 \\
965 \div 5 & =1000 \div 5-35 \div 5 \\
& =200-7 \\
& =193
\end{aligned}
$$

At-Home Help

Here are two ways to divide a decimal number by a one-digit number.

For example, calculate $3.72 \div 4$.

- Use base ten blocks to model 3.72. Divide the blocks into 4 equal groups. Regroup blocks as needed so you can divide.
- Rename 3.72 as 372 hundredths. Then calculate $372 \div 4$. Remember that the answer is also in hundredths.

193 hundredths $=1.93$

Lesson 7 - Solving Problems by Working Backwards
Learning Goals: Work backwards to solve problems that involve decimals.

Question:

Aaron sewed together eight equal sections of fabric. When he added another 7.00 m , the total length of the fabric was 18.00 m . How long was each of the original eight sections?

Answer:

1.375 m ; for example, 11.00 m made up the eight sections since $18.00-7.00=11.00$. That means each section was $11.00 \div 8=1.375 \mathrm{~m}$.

At-Home Help

Follow these steps to solve a problem:
Step 1: Understand the problem.
Step 2: Make a plan.
Step 3: Carry out the plan.
Step 4: Look back and check your answer.

