Chapter 7: Fractions

Lesson 1 – Modelling Fractions **Learning Goals:** Model fractions equal to 1 or greater than 1.

Question:

Use pattern blocks to model each improper fraction. Sketch each fraction.

An **improper fraction** is a fraction with a numerator that is greater than its denominator.

For example, $\frac{7}{3}$ is an improper fraction.

In this model, one circle represents one whole. Each whole has 3 parts. 7 parts are shaded to represent $\frac{7}{3}$.

Lesson 2 - Fractions Greater Than 1

Learning Goals: Compare numerators and denominators to interpret fractions.

Question:

- a) Model $\frac{6}{5}$ and $\frac{17}{4}$ using linking cubes. Sketch your models. Circle one whole in each sketch.
- b) How many cubes did you use to model the whole in part a)? How did you decide on the number of cubes to use?

Answer:

a) For example,

b) To show $\frac{6}{5}$, I used 5 cubes in the whole; to show $\frac{17}{4}$, I used 4 cubes in the whole. I looked at the denominator to decide how many cubes to use in each whole

At-Home Help

You can use linking cubes to model improper fractions. For example, this model shows $\frac{5}{2}$.

Notice that each whole contains two cubes.

Lesson 3 – Representing Improper Fractions as Mixed Numbers **Learning Goals:** Relate improper fractions to mixed numbers.

Question:

Deanna puts a bucket under a dripping tap to catch the water. In one hour, $\frac{1}{10}$ of the bucket is filled. She uses this amount to estimate the number of buckets of water her family wastes in a day.

- a) What improper fraction describes the number of buckets of water that are likely to be filled in 24 h?
- b) What mixed number describes the number of buckets of water that are likely to be filled in 24 h?

Answer:

a) $\frac{24}{10}$

b) $2\frac{4}{10}$

At-Home Help

A mixed number is a number with a whole number part and a proper fraction part.

For example, $3\frac{1}{4} = 3 + \frac{1}{4}$.

Lesson 5 - Representing Mixed Numbers as Improper Fractions **Learning Goals:** Express a mixed number as an equivalent improper fraction.

Question:

- a) Represent $3\frac{2}{3}$ and $2\frac{1}{5}$ as improper fractions. Use a model or a diagram.
- b) Explain why the two improper fractions have the same numerators but different denominators.

Answer:

b) Both times there are 11 sections shaded. That means the numerators of the improper fractions are 11. But for ¹¹/₃ each section represents ¹/₃ and for ¹¹/₅ each section represents ¹/₅. Lesson 6 - Comparing Fractions and Mixed Numbers

Learning Goals: Compare improper fractions and mixed numbers using models and diagrams.

Question:

Oksana skated for $1\frac{5}{6}$ h. Ken skated for $\frac{7}{4}$ h. Who skated longer? Describe your strategy for comparing the times.

Answer:

Oksana. For example, I could change $\frac{7}{4}$ to the mixed number $1\frac{3}{4}$. Then I would compare $\frac{3}{4}$ and $\frac{5}{6}$ to decide which was greater. I know that $\frac{5}{6}$ is only $\frac{1}{6}$ away from 1 and $\frac{3}{4}$ is $\frac{1}{4}$ away, which is more, so $1\frac{5}{6} > 1\frac{3}{4}$.

At-Home Help

You can use a number line to order or compare improper fractions and mixed numbers.

For example, the number line below is used to compare $\frac{2}{5}$ and $1\frac{1}{10}$.

Lesson 7 - Solving Problems Using Logical Reasoning

Learning Goals: Use logical reasoning to solve mixed number problems and fraction problems.

Question:

Three digits in a row make up the mixed number —. The numerator of the equivalent improper fraction is 23. What could the mixed number be? Explain your thinking.

Answer:

For example, I started by listing improper fractions with a numerator of 23: $\frac{23}{2}$, $\frac{23}{3}$. Then I wrote these as mixed numbers: $10\frac{1}{2}$, $7\frac{2}{3}$. The digits in each of these mixed numbers aren't in a row, so I need to try a greater denominator: $\frac{23}{4}$.

 $\frac{23}{4} = 5\frac{3}{4}$ That works.

 $\frac{23}{5} = 4\frac{3}{5}$ That works too.

 $\frac{23}{6} = 3\frac{5}{6}$ That doesn't work.

The mixed numbers could be $4\frac{3}{5}$ or $5\frac{3}{4}$.

At-Home Help

Follow these steps to solve a problem:

- Understand the problem.
- Make a plan to solve the problem.
- Carry out the plan.
- Look back to make sure your solution makes sense.